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1.  THEORETICAL ANALYSIS OF ACOUSTO-OPTIC PHENOMENA 

AND ITS IMPLEMENTATION IN BRAGG CELLS 
 

In optical free-space laser communications, a new steering technique is being 

developed.  It involves the use of acousto-optics (AO), and particularly the use of a 

combination of two Bragg cells in series to achieve both the horizontal and vertical 

steering. The reason to use AO arises from the need of a high-speed steering, as opposed 

to the speed limitations that are encountered using mechanical steering devices. Indeed, 

Bragg cells offer higher tracking bandwidth, and high optical and electrical efficiency.  

A description of the acousto-optic phenomena that occurs inside the Bragg cell is 

given.  Analysis of the factors responsible for inertia, accuracy, power consumption, and 

mass of the devices is provided.  Finally, an assessment of the environmental effects on 

the efficiency of the Bragg cell is made. 

 
1.1.  Mathematical Description Of The Bragg Cell 

As stated earlier, Bragg cells are being studied as a part of a laser beam steering 

system in order to accomplish the agile steering of the laser beam used in satellite 

communication.  The use of a laser beam in satcom offers many advantages such as the 

small beam divergence, narrow beam width, and high switching ability.  These three 

characteristics result in a communication channel that can offer a virtually continuous and 

more secure data transfer. However, the use of laser beams as a communication medium 

is associated with a main technical challenge: high accuracy pointing, acquisition, and 

tracking (PAT) is required.  Indeed, a small angle deviation at the emitting source results 

in a high position error due to the large distances between communicating stations 

involved in laser communications. Moreover, other considerations might be noticed in 

the use of the Bragg cell, as to yield the exact deflection of the laser beam.  The main one 

concerns the angle at which the laser beam reaches the Bragg cell.  This angle must be 

equal to the Bragg angle, and the input frequency must be within a predefined frequency 

range to ensure that the Bragg cell is still in the Bragg regime. 
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A-Definition of the Bragg condition: 

The Bragg cell is an AO device that can be manufactured either from glass or 

plastic. This device can be viewed as a medium where light interacts with sound yielding 

a diffracted light beam. Bragg cells can operate in two regimes, the Bragg regime, and the 

Raman-Nath regime.  The working regime of the Bragg cell is determined by the Klein–

Cook parameter Q= 2π 2/ΛLλ where λ is the wavelength of the incident laser beam, L is 

the width of the acoustic transducer in the cell, Λ is the sound wavelength. This ratio is 

basically a figure of merit that helps describe the acousto-optic interaction in a given 

configuration. When this ratio is much greater than 2π, the cell is in the Bragg regime, 

and if not, it is in the Raman Nath regime. The Raman Nath regime is the regime at when 

the cell outputs more than two orders of light.  When the cell is in the Bragg regime, the 

diffracted light beam will have a different frequency and new direction, depending on 

both the sound frequency, and the incident beam direction as shown in Figure 1.1. 

Parameters shown in the figure are: fc - center frequency of the acoustic wave, n – the 

index of refraction, ν - acoustic velocity in crystal medium.  

The sound wave is generated by the input RF signal that goes through a 

transducer, the RF signal being the original signal that causes the beam deflection to the 

desired spot.  As the RF signal passes through the transducer, it is transformed in a sound 

wave that travels through the Bragg cell. Thus, different regions of expansion and 

compression are created inside the Bragg cell, producing changes in density, which yields 

a change in the index of refraction of the Bragg cell following the equation [1]: 
 

                                                    ∆n(z,t) = ∆n sin(wst - ksz),                                      (1.1) 

Where  z - position in the Bragg cell along the vertical axis; 

ws - sound frequency, 

ks - sound wave vector given by ws/v. 

The change in the index of refraction creates a grating inside the Bragg cell, 

which is responsible for the beam deflection.  It happens as a result of collision of light 

with sound. It can also be viewed, for simplification, as a collision between a light photon 

and a sound phonon.  After the collision has occurred, the result at the output of the 

Bragg cell is a diffracted photon with a different frequency. 
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Figure 1.1. Principle of operation of the Bragg cell 
 

Let wi be the frequency of the incident light, and ki be the propagation vector of 

light, then using the conservation of energy principle and the principle of momentum 

conservation, we can define, the frequency, and propagation vector of the diffracted laser 

beam to be: 

                                                           wd = ws +  wi                                         (1.2) 

                                                kd  =  ks  +  ki          (1.3) 

Using the fact that sound frequencies are less that 1010 Hz, while the optical frequencies 

are higher than 1013 Hz, ws can be neglected in (1.2), hence:  

                                                    wd = wi                                                    (1.4) 

which implies that  

                                                   kd  =  kI = k.        (1.5) 

Using this relation, in the following scheme, representing the light-sound interaction in 

the Bragg cell yields what is known as the Bragg condition.  

Diffracted Laser 
Incident 

Laser                 Traveling ^ouslic Waw           .^©a =^/(«v)-2©a 

f*^ ^^^*\ 

&B =ix * ft IQ nv)    ^^-. ^£^             1 ®* 

^^-_                                               1   i        -      11         1        1 h=v/f                                             ^^            Undetected 
*                                                              "~^-^ Laser 

—^^^^^^^m- 

~*         Acoustic triruduc^r 

Input frequency (f) 
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Figure 1.2. Momentum conservation diagram 
 

Indeed, if    

                                                            kd  =  ki = k,                              (1.6) 

then  

                                                    ks = 2k * sin θ,                          (1.7) 

Where θ is the incidence angle of the laser beam.  

Using the fact that         

  k = 2πn / λ,                            (1.8) 

and 

   ks = 2π / λs,                             (1.9) 

we have  

    2π / λs = 4π n/ λ * sin θ                    (1.10) 

And, the Bragg condition is defined by : 

        2λs * sin θ  = λ/n                                                   (1.11) 

Which yields the desired Bragg angle definition: 

             θB  = sin-1 (λ / 2nλs) = sin-1 (λfc / 2nv)                                     (1.12) 
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B- Deflection angle of the diffracted beam 

When the laser beam reaches the Bragg cell at the right Bragg angle, and after the 

light- sound interaction has occurred, the output of the Bragg cell is composed of two 

orders: a diffracted first order, and a non-diffracted zeroth order. In our case, we are 

interested in the first order diffracted laser beam.  This laser beam should be deflected 

according to the sound frequency applied to the Bragg cell transducer.  

When the sound frequency is changed by sf∆ , from sf  to ss ff ∆+ , there is a 

change in the magnitude of the sound vector equal to vfk ss /)(2 ∆=∆ π [1], as shown 

Figure 1.3. This change in the sound vector results in a small angle change .θ∆  

Figure 1.3. Momentum diagram 
 

The incident laser beam direction is kept unchanged during the whole experiment, 

while the magnitude of the diffracted vector k experiences only a small change of the 

order of 10-10 or less, and therefore, is considered to stay unchanged.  The beam will be 

diffracted along the direction that least violates the momentum conservation principle. 

For small incident Bragg angles θ, and small changes ∆θ, the deflection angle is 

proportional to the frequency of the input acoustic wave and can be found as 

                                             )*/()*( vnf s∆=∆ λθ                                         (1.13) 

The direction of the diffracted beam can be controlled by the frequency of the 

acoustic wave, which is the frequency of the electrical signal applied to the piezoelectric 

transducer. 

 

A*, = 2*-<4/,)/v 
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The deflection angle is given by  

        BD nvf Θ−=Θ 2)/(λ                (1.14) 

Acoustic velocity inside the medium varies depending on the mode and 

propagation direction of the acoustic wave inside the cell.  In the setup available in our 

laboratory, a shear wave is generated implying a velocity of the sound equal to 617m/s.   

Expression for the deflection angle can also be rewritten as: 

          )2/(*2)/( nvfnvf cD λλ −=Θ ,                (1.15) 

that is equivalent to: 

   )(*)/( cD ffnv −=Θ λ                (1.16) 

Equation (1.16) expresses the deflection output in term of the input frequency 

without reflecting any dynamics. A delay function has to be added to the above relation 

to simulate the delay needed for the acoustic wave to reach the input laser beam passing 

through the crystal. It is also necessary to introduce a lag filter representing the response 

time needed, to change the position of the diffracted beam while the acoustic wave 

propagates across it. As a result, the transfer function, relating the deflection angle to the 

input sound frequency, is: 

 G(s) = θD/(f-fc) = [ )/(nvλ ]  * [ k / (k+s) ]e-sτ           (1.17) 

Parameters of the lag filter and delay function are to be defined later. 

   

C-Intensities of the diffracted orders: 

When the cell is in the Bragg regime, only two orders are expected, however, 

depending on the value of Q, the intensity of the diffracted beam will vary. It increases as 

the Klein-Cook parameter is getting larger than 2π; if Q is equal to 2π or smaller, more 

diffracted beams are generated by the cell reducing the power of the first diffracted order. 

To describe the distribution over the scattered orders in the Bragg regime, a set of 

coupled differential equations [2] can be written as follows 

     { }11
)1(

2 +−
−−

Λ

+
−

= n
jnQ

n
Qnjn EeEej

d
dE ξξα
ξ

          (1.18) 
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Where n - the order of the scattered beam,  

Q - Klein-Cook parameter,  
Λ

α  - phase peak delay in the medium,  
ξ  - normalized position of the beam inside the cell.   

We are interested in the case when 1=ξ  that corresponds to the output of the 

Bragg cell.  The phase peak delay is defined by: 

                                                          
Λ

α  = 
2

SLCkm ,                      (1.19) 

Where C is given by pnC *2
0−= ,  

 p - strain-optic coefficient of the medium,  

mk - light propagation constant,  

S - sound field amplitude,  

L - interaction length of the cell defined by the transducer size.  

 

When Q>>2π, the cell is considered to be in the Bragg regime. In reality, Q is 

finite and in many instances can be slightly greater than 2π (this especially applies to the 

case when a large steering range needs to be achieved). This is considered to be a 

deviation from the conditions traditionally viewed as “nominal.” The general trend is to 

concentrate the optical energy in the immediate spatial neighborhood of the zeroth order. 

Therefore, truncation of much weaker higher diffracted orders creates negligible 

numerical errors. Applying (1.18) to the first five scattered orders, we obtain the 

following equations for 21012 ,,,, EEEEE −−  [2]: 

 

{ }3
2

1
2

2
EeEej

d
dE QjjQ ξξα
ξ

+
−

= −

Λ

 

                                            { }20
1

2
EeEj

d
dE jQξα
ξ

+
−

=

Λ

 

                                            { }11
0

2
EEej

d
dE jQ +

−
= −

Λ

ξα
ξ

                   (1.20) 
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{ }02
21

2
EeEej

d
dE jQQj ξξα
ξ

−
−

Λ

− +
−

=  

 { }1
2

3
32

2 −
−

−

Λ

− +
−

= EeEej
d

dE QjQj ξξα
ξ

 

The set of coupled differential equations defined by (1.18) can be solved 

numerically for a given number of diffracted orders to demonstrate how the change of Q 

affects intensity distribution among them. The following figures show how intensities 

vary when a Klein-Cook parameter is changed, and the phase-shift delay is assumed to be 

equal to 4 [2] For the sake of simplicity only six diffracted orders are used along with the 

non-diffracted order.  

Figure 1.4 presents numerical results for Q=2π. It is seen from the figure that 

there is a noticeable amount of intensity in scattered orders other than the two orders of 

interests. At the output of the Bragg cell intensity of the first diffracted order is 

approximately 84% of that of the incident light (which corresponds to 84% diffraction 

efficiency). The remaining 16% 

 
Figure 1.4. Intensity distribution for Q=2π 

 

is distributed among the other diffracted beams. This situation corresponds to the 

boundary line between the Bragg and Raman-Nath regimes of operation. Figure 1.4 

1.20 
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illustrates that by selecting a proper value for a)  we can put a significant portion of 

intensity into the first order. Figure 1.5 presents the results when the Klein-Cook 

parameter is changed to 4π and the systems is “deeper” in the Bragg mode. As can be 

seen from this numerical solution, higher order diffracted beams start “fading” compared 

to those in Figure 1.4. At the same time intensity of the first order diffracted beam at the 

output of the Bragg cell practically does not change and stays around 84% of the incident 

light intensity.  

 

 
Figure 1.5. Intensity distribution for Q = 4π 

 

Figure 1.6 presents the case when the Klein-Cook parameter is set to 8π  

 

1.20 

0.00       0.20       0.40       0.60       0.80 
\\l i  *•*•*»ll 

1.00 1.20 



 

 

 

10

 
Figure 1.6. Intensity distribution for Q = 8π 

 
When Q is equal to 8π, essentially only the two orders of interest are present, 

while the other scattered beams practically “fade out”. Another interesting observation 

from Figure 6 is the fact that the intensity of the diffracted laser beam I1 remains virtually 

unchanged getting 84% of the incident beam intensity.  However, the presence of the 

other orders affects the intensity that falls into the zeroth non-diffracted order.  Therefore, 

as the figure of merit Q is changed within the near-Bragg regime in the output of the cell 

we observe redistribution of intensities among the scattered beams except I1 that 

practically does not change.  

Ideally, if Q were set to infinity, the set of coupled equations defined by (1.18) 

would get reduced to [2]: 

 

                                                        { }10

2
Ej

d
dE

Λ

−
=

α
ξ

                                                (1.21a) 

                                                        { }0
1

2
Ej

d
dE

Λ

−
=

α
ξ

                                               (1.21b) 

Solving for the two orders yields: 

                                                     )
2

cos(*0

Λ

=
αξ

incEE                                                (1.22a) 
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                                                  )
2

sin(**1

Λ

−=
αξ

incEjE                                            (1.22b) 

The above equations are consistent with the numerical results presented above. Indeed, 

beam intensity can be found by raising its spectrum E to the second power, hence 

                                                     )
2

(cos* 2
0

Λ

=
αξ

incII                                               (1.23a) 

                                                      )
2

(sin* 2
1

Λ

=
αξ

incII                                               (1.23b) 

 

I0 and I1 in Figure 1.6 are described by equations (1.23) for a)  =4. Moreover, it can also 

be demonstrated that (1.23b) can be used to estimate I1 in the cell output. For a)  =4 and ξ 

= 1 

,*83.0)
2

1*4(sin* 2
1 incinc III ==  

which practically matches the results presented in Figures 1.4 – 1.6. 

1.2.  Assessment Of The Environmental Effects On The   Efficiency And 

Performance Of The Bragg Cell System 

 
A-Vibrations effects: 

A 2-dimensional Bragg cell based steering system is intended for satellite-borne 

applications.  It will, therefore, experience some vibrations due to the satellite platform 

jitter. Spectrum of these vibrations does not exceed 2-3Khz.  The system does not have 

any moving parts; therefore, there is practically no vibration of the laser source with 

respect to the steering device. The only possible effect on the Bragg cell is addition of 

these disturbances to the vibration spectrum of the transducers. The fact that frequencies 

of external vibrations are small compared to the drive frequencies of the Bragg cell 

(usually of the order of tens of MHz), their effect is virtually zero, and functioning of the 

steering device itself is not altered by the satellite platform jitter. However, due to 

displacements of the entire system caused by vibrations, beam positioning may become 

inaccurate. These disturbances can be eliminated by the use of adaptive control 

techniques that will be discussed later. 
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  B-Temperature effects: 

The Bragg cells used in our laboratory are made from Tellurium Dioxide.  The 

thermal expansion coefficient of this material is 610*5.19 − per degree Kelvin at 290 Ko , 

with a melting point of 1006 Ko .  In addition, the hardness coefficient of the material is 4 

MΩ. Using this type of Bragg cells for satellite communications purposes requires 

special measures to create an environment suitable for device operation and preventing 

the cell from experiencing critical temperature changes. When exposed to higher 

temperatures the cell expands, thus changing the interaction length L. Since the operation 

temperature range is not large, linear expansion can only be a small fraction of a percent. 

Thermal expansion of the cell does not affect the deflection angle as can be seen from 

(1.16) and (1.17). On the other hand, the Klein-Cook parameter Q is a function of L. 

However, if Q is large enough, and the change of L is very small, then performance of the 

steering device will not be affected. It has been demonstrated in Figures 1.4 – 1.6 that 

even such significant changes of Q as from 2π to 4π and then to 8π did not change 

intensity of the first diffracted order in the output of the cell. Another parameter affected 

by L as per (1.19) is the phase peak delay .α̂ It is seen from (1.23b) that intensity of the 

first diffracted order is directly affected by this parameter; however, since the change of 

α̂  is so negligible, I1 is practically not affected. 

 

C-Effects of the acoustic power on the diffraction efficiency: 

For isotropic Bragg diffraction assuming that the incident angle is equal to the 

Bragg angle as shown in Figure 1.1, the diffraction efficiency η  can be expressed in 

terms of the acoustic power aP as [3]: 

                                                           )
2

(sin 2 νη =                             (1.24) 

                                       =ν
2

1

2

0

*
2

*
cos

1*2






aP
H

LM
θλ

π               (1.25) 

Where 2M - acousto-optic figure of merit corresponding to the Tellurium Dioxide 

material 

 of the Bragg cell.  For isotropic diffraction, with a shear acoutic wave, and a 

circularly polarized optical wave 2M is equal to kgs /10*1200 315− . 
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0λ - incident laser beam wavelength 

 L and H - dimensions of the acoustic transducer as presented in Figure 1.7. 

 

 
 

Figure 1.7. Dimension of the AO medium and the piezoelectric transducer 
 
 

The diffraction efficiency is thus given by: 

                                 
















=

2
1

2

0

2

2cos
sin aP

H
LM

θλ
πη                 (1.26) 

Equation (1.24) is a trigonometric function that has a maximum when its 

argument is equal to π/2. In other words, parameter ν defined by (1.25) should be close to 

π. It can be demonstrated that in the cases of small diffraction efficiency ν is less than π; 

therefore, it needs to be increased. Let us consider two cases: 

 
 a) Constant acoustic power: 

At a constant acoustic power, achieving an increase in the diffraction efficiency 

requires the use of a material that has a high figure of merit 2M [3]. Choosing an acoustic 

transducer that has a lower height H and a longer length L can also increase the 

efficiency. One can also notice that a higher efficiency is obtained using laser beams with 

lower wavelength [3]. 

 

 b) Modulation of the diffracted order: 
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The diffraction efficiency of the cell can be achieved by changing the acoustic 

power. As a result, modulation can be implemented by changing the acoustic power 

especially if the efficiency is small (<50%) [3].  Indeed, if η is small, then using the fact 

that xx ≈sin , the efficiency equation can be reduced to: 

                                                         aP
H

LM

0

2
2

2λ
πη =                                                      (1.27) 

offering a linear modulation. In the case when efficiency is larger, the modulation 

expression can be derived from (1.25) by equating ν to π as follows: 

                                                      
LM

H
Pa **2

cos**

2

22
0 θλ

=                                               (1.28) 

Note: The power consumption of the Bragg cells used in our laboratory is 400 mW for 

each device.   

 

1.3  Conclusion 

 
In this portion of the research project a number of tasks has been accomplished. 

Theoretical study of the acousto-optical phenomena has been conducted. Based on the 

equation of physics describing the process of sound-light interaction a mathematical 

description of the Bragg cell has been developed. Special attention has been given to the 

case when the cell operates in the near-Bragg regime. It has been demonstrated that even 

when the device deviates from the “nominal” conditions it is still possible to achieve high 

diffraction efficiency. It has also been shown that the factor responsible for inertia of the 

cell is the propagation delay of the sound wave inside the crystal, and therefore, is a 

function of dimensions of the cell as well as acoustic velocity. Accuracy of the device is 

very high for a small steering range. For small angles the relationship between the 

acoustic frequency and the deflection angle is linear as has been shown by (1.13) – 

(1.16). Therefore, the accuracy is determined purely by the capability of the device driver 

to generate the required acoustic frequencies. It is also obvious from (1.13) – (1.16) that 

resolution of the system depends on the frequency resolution of the driver. Section 1.3 of 

this report has demonstrated 2 approaches to power management. One of them implies 

constant acoustic power, however, this approach requires that the amplitude of the 

acoustic signal for all frequencies is large enough so that the wave does not attenuate too 
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much before reaching the beam. Attenuation is proportional to the frequency, therefore, 

the largest frequency value should be used to select acoustic power, however, it will be 

excessive for lower frequencies. Another approach suggests modulation as presented by 

(1.28). Assessment of environmental effects on the efficiency and performance of the 

Bragg cell has been performed. This task has resulted in obtaining a theoretical 

mathematical model of the Bragg cell described by (1.17), (1.18), (1.23). 
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2.  EXPERIMENTAL ANALYSIS AND CHARACTERIZATION OF 

THE LASER BEAM POSITIONING SYSTEM COMPONENTS 
 
2.1.  Experimental Analysis And Characterization Of The Bragg Cell 

 
A number of measurements has been performed to estimate dynamics and statics 

of the Bragg cell. The model suggested as a result of theoretical study of the acousto-

optic phenomena uses change of the acoustic frequency of the transducer as an input and 

deflection angle of the laser beam as an output and has the following form: 

 
                                     G(s) = θD/(f-fc) = )/(nvλ * [ k / (s+k) ]*e-sτ,                            (2.1) 
Where θD – deflection angle; 

 f – acoustic frequency of the transducer; 

 fc – center frequency of the Bragg cell (24 MHz); 

λ - wavelength of the incident beam (670 nm); 

 n – refraction index (2.26); 

 v – acoustic velocity in crystal medium (617 m/sec); 

 k – parameter of the lag filter modeling propagation of the acoustic wave across       

                 the laser beam; 

 τ - parameter of the delay function reflecting the time that the acoustic wave  

                 propagates from the transducer to the laser beam.  

 

The laser positioning system used for experimentation is presented in Figure 2.1. 

The first set of measurements has been performed to verify the values of the deflection 

angles as we change acoustic frequency applied to the crystal. For this purpose a quadrant 

detector has been placed at a distance d=87 cm from the Bragg cell. Acoustic frequency 

has been set to the smallest available value (18 MHz), and position of the detector has 

been adjusted so that the beam is right in the middle of it. Then acoustic frequency has 

been changed in increments of 14.58 kHz. Each time after the change the quadrant 

detector has been repositioned to keep the beam in the middle of it. The exact linear 

displacement of the quad in the vertical direction ∆z has been measured after each step 
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with a precision of tens of microns. The displacements have been mapped to obtain the 

corresponding deflection angles. 

 
Figure 2.1. Laser Beam Positioning System 

 

Theoretically the deflection angle can be found as follows 

 

                                                       θD = (λ/nv)*(f-fc)                                                     (2.2) 
 

While the center frequency of the Bragg cell is 24 MHz, the drive electronics is 

designed in such a way that it operates in two acoustic frequency bands: 18 – 23.25 MHz 

and 24.75 – 30 MHz. Fig. 2.2 presents configuration of the detector circuitry. A quadrant 

detector has been used to transform optical energy of the beam into corresponding 

electrical signals measured by an oscilloscope. The circuit is configured in such a way 

that it detects beam deviation only in the vertical direction (elevation channel). 
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Figure 2.2. Quadrant detector circuit 
 

Figure 2.3 presents theoretical and measured results for the first band. Calculated 

response of the Bragg cell is shown by a dotted line. As can be seen from the figure that 

for this frequency range theoretical and experimental values are very close. Results for 

the second frequency band are presented in Fig. 2.4. While for lower frequencies the 

measured response tracks the theoretical values, we can see noticeable deviation at higher 

frequencies. The possible cause of these discrepancies will be discussed later.  
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Figure 2.3. Deflection angles for the first frequency band 

 

 
Figure 2.4. Deflection angles for the second frequency band 
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The next experiment has been performed to obtain step response of the Bragg cell. 

As an input we applied a rectangular signal (acoustic frequency changing between 20.625 

and 27.375 MHz). The result is presented in Fig. 2.5. 

 
 

 
Figure 2.5. Step response of the Bragg cell 

 

The curve presented in Fig. 2.5 may be used to estimate parameter k in equation (2.1), 

since the above response is associated with transition of the acoustic wave through the 

laser beam. Settling time of a first order system is related to parameter k as follows.  

                                                                 Tset=4/k                                                         (2.3) 
 

For the response presented above Tset = 41.6µsec, therefore  

k = 4/41.6*10-6 = 96154 rad/sec. 

 

Another parameter of equation (2.1) that needs to be estimated is τ. It can be 

defined by performing a series of two experiments with changing beam position relative 

to the transducer of the Bragg cell. Initially the distance from the transducer to the beam 
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is 5 mm. We obtain a step response as in the previous experiment. Then the beam is 

shifted from the transducer by another 5 mm, so the distance is 10 mm. This change 

increases the propagation delay. The superimposed results of these two experiments are 

shown in Fig. 2.6. 

 

 
Figure 2.6. Delay estimation experiment 

 

The lagging trace in the above figure represents the second experiment. The time 

delay τ is approximately 8µsec. This number is consistent with specifications of the 

Bragg cell crystal. The acoustic wave propagates 5 mm in 8µsec, which corresponds to a 

speed of approximately 625 m/sec (the nominal value is 617 m/sec).  

To ensure that the above measurements represent dynamics of the Bragg cell, we 

have estimated delay associated with detector electronics presented in Fig. 2.2. Two 

voltage signals have been measured and superimposed. One of them is at the output of 

the circuit in Fig. 2.2; the second signal is taken from node a. The result is presented in 

Fig. 2.7. 
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Figure 2.7. Electronics delay experiment 

 

For convenience the signal Va has been inverted and offset with respect to the 

output signal. In the above figure the output voltage is represented by the leading trace. 

This can be explained by direction of currents in the circuit (see Fig. 2.2). Voltage drops 

from node out to node a. The path between these two nodes includes resistors and 

capacitive elements (parasitic capacitances inside the amplifiers). This RC circuit creates 

a phase lag in the direction from out to a. Fig. 2.8 presents a zoom-in version of the same 

measurements.  
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Figure 2.8. Electronics delay (zoom-in) 

 

The time delay associated with detector electronics is approximately 8µsec, which 

is considerably smaller than response time of the Bragg cell. Thus, electronics delay does 

not interfere with Bragg cell step response measurements presented in Fig. 2.5. 

The next set of measurements has been performed to assess optical and acoustic 

properties of the Bragg cell. RF signals of different frequencies have been applied to the 

transducer to perform deflection in the horizontal direction. The output beam has been 

monitored by a CCD camera. The output of the camera has been connected to the 

oscilloscope to view the response provided by individual pixels. Voltage generated by a 

pixel of a CCD camera is proportional to the intensity of light illuminating this pixel. 

Thus, we are able to obtain the intensity profile of the beam after it is deflected by the 

Bragg cell. Since the camera uses interline transfer mode, we have captured the signals 

corresponding to one line of pixels, as well as the entire frame of the field of view. The 

results are presented in Fig. 2.9 – 2.18. 
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Figure 2.9. Lines of pixels at f = 18 MHz 

 

 
Figure 2.10. One frame at f = 18 MHz 
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Figure 2.11. Lines of pixels at f = 21 MHz 

 

 
Figure 2.12. One frame at f = 21 MHz 
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Figure 2.13. Lines of pixels at f = 24 MHz 

 

 
Figure 2.14. One frame at f = 24 MHz 
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Figure 2.15. Lines of pixels at f = 27 MHz 

 

 
Figure 2.16. One frame at f = 27 MHz 
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Figure 2.17. Lines of pixels at f = 30 MHz 

 

 
Figure 2.18. One frame at f = 30 MHz 
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For each operating point the first figure presents approximately three lines of 

pixels. Negative voltages between them are used for synchronization, so that the monitor 

can distinguish beginning and end of each line. The second figure for each frequency 

shows the whole frame (all lines stacked together). It also presents intensity profile of the 

beam .  

The following observations can be made. The peak intensity does not change as 

the acoustic frequency is increased. One can see from Fig. 2.9 – 2.18 that the 

corresponding voltage signal generated by the CCD camera is always equal to 1.08 V 

(this is better seen in the figures showing only a few lines of pixels). From the same 

figures one can see that the peak shifts as we change the frequency (this is due to 

horizontal steering of the beam). In the figures representing the whole frame we notice 

some changes in the spatial domain when the acoustic frequency is increased. This is 

related to acoustic attenuation. The drive electronics is designed in such a way that it 

applies a constant 400 mW acoustic signal regardless of the frequency. As the acoustic 

wave propagates through the crystal, it attenuates with attenuation constant being 

proportional to the square of the sound frequency. It has been shown in Chapter 1 that 

diffraction efficiency depends on the acoustic power that changes in the direction of 

acoustic wave propagation. As a result, at higher frequencies when the wave traverses the 

beam, its power decays faster and diffraction efficiency on the outer side of the beam 

decreases as can be seen from (1.26). On the other hand, the side of the beam close to the 

transducer is affected more by the acoustic wave, since the acoustic wave has not 

attenuated much yet. This is demonstrated in Fig.  2.19. 

 
Figure 2.19. Acoustic attenuation effect 
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The intensity profile distortion of the deflected beam creates an effect of beam 

shifting (one can see from Fig. 2.19 that the peak intensity is closer to the bottom of the 

Bragg cell where the transducer is located). When position of this beam is determined 

using a quadrant detector it appears that the deflection angle is less than it should be 

theoretically. This is the effect that we observe in Fig. 2.4 at high frequencies, and it is 

also consistent with the intensity profiles at 27 and 30 MHz presented in Fig. 2.16 and 

Fig. 2.18. A possible solution to this problem is the use of acoustic signal modulation 

such that for all frequencies of operation the sound wave does not decay too much while 

it passes through the beam. 

 
2.2. Experimental Analysis And Characterization Of The Quadrant Detector 

 
2.2.1. Experimental characterization of the quadrant detector 
 

The quadrant detector is a silicon photodiode detector, and is widely used in 

position sensing [1,2]. 

 
 

 
Figure 2.20. Silicon Photodiode Quadrant detector RCA C30927E [3] 

  

The photodiode used for our experiments is an RCA C30927E that has four 

quadrants. Each quadrant generates a voltage.  Using these four voltages, as inputs to the 

circuitry containing operational amplifiers as shown in Figure 2.22, the actual position of 

the laser beam is sensed.  The electronic circuit takes the four voltages as inputs, and 

outputs two voltages.  These two voltages indicate the azimuth and elevation 

displacements of the laser beam as sensed by the quadrant.  Basically, in order to get the 

elevation output, we compute the difference between the voltages of the two top 
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quadrants and the two bottom quadrants.  The azimuth voltage is computed by 

subtracting the sum of the voltages in the leftmost quadrants from the sum of voltages in 

the rightmost quadrants.  A schematic representation of the quadrant is shown in Figure 

2.21. 

 

Figure 2.21 Quadrant detector simplified scheme 
 

Using the notation as given in Figure 2.21, the elevation and azimuth voltages 

generated by the circuit in Figure 2.22 are given by: 

 

Vel = (Va+Vb) – (Vd+Vc) 

Vaz = (Va+Vd) – (Vb+Vc). 

A series of experiments have been performed using the quadrant detector to 

determine the behavior of this optical sensor as the beam is moved across the different 

quadrants in various directions.  The first set of experiments consisted of determining the 

change in the azimuth and elevation channels as the beam was moved along the 

horizontal axis, the vertical axis, and finally diagonally. 
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Figure 2.22. The quadrant detector circuitry [4] 
 

The readings in the azimuth channel as the beam is moved along the axes and 

diagonals of the quadrant detector are presented by the following figures.  The quadrant 

detector has a radius equal to 750 microns; however, the useful radius has been estimated 

to be approximately equal to 600 microns.   
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Figure 2.23. Azimuth channel response to horizontal beam displacement (y=0) 
 

 

Figure 2.24 Azimuth channel response to diagonal beam displacement (y=x) 
 

The reading in the elevation channel, as the beam is displaced along the vertical 

axis (x=0) is the same as that shown in Figure 2.23. Similarly, the reading in the elevation 

channel as the beam is moved diagonally (y=x), is the same as that in the azimuth 

channel as shown in Figure 2.24. The quadrant detector exhibits coupling between the 
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two channels.  This property is illustrated in Fig. 2.25, representing azimuth channel 

response. In this experiment the horizontal position is kept at 100 microns, while the 

elevation position varies from 0 to 1000 microns.  It could be seen that although the 

azimuth position is unchanged, the increase of elevation results in response in the 

azimuth channel. This phenomenon could be explained by the varying energy distribution 

pattern between four segments of the quadrant detector. 

 

Figure 2.25 Illustration of coupling effect in the quadrant detector 
 

Another experiment with the quadrant photodiode detector has been performed. 

The laser beam has been steered across one quadrant in both horizontal and vertical 

directions to obtain the complete characteristics.  Fig. 2.26 presents a summary of this 

experiment.  The data have been recorded while moving the beam across quadrant A (see 

Figure 2.21). These results will be used to set up a mathematical model of the quadrant 

photodiode detector.  
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Figure 2.26 Response in the azimuth channel 

 
2.2.2. Mathematical description of the quadrant detector 
 

In order to implement the quadrant detector model, we first tried to come up with 

an analytical expression that relates the coordinates of the laser beam on the quadrant and 

the voltage generated in the outputs of the detector.  The azimuth and elevation channel 

outputs are directly related to the energy of the laser beam that falls in each quadrant. 

This energy can be analytically presented as a double integral of the intensity of the laser 

beam over the quadrant area.  Assuming that the laser beam used as a communication 

medium has a Gaussian intensity distribution profile, as presented in [5], the energy in 

each of the four quadrants as defined in figure 2.21 is given by the following equations: 
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In these integrals, R represents the radius of the quadrant, X and Y - horizontal and 

vertical coordinates of the laser beam, respectively, I0 – peak intensity of the beam, w – 

beam width.  Obtaining a closed-form solution is not possible because the result of the 

inner integrals contains the error function “erf”, that cannot be integrated. Before using 

numerical approximation to come up with a mathematical model of the quadrant detector, 

various attempts to solve the double integral analytically have been performed.   

 

A- Analytical model : Approximations methods  

 

The idea of this approach is finding an approximation of the integrant in the 

equations above that can be double integrated.  The intensity of the laser beam has 

Gaussian distribution.  First we used Taylor series expansion to find a good 

approximation. Representing an exponential expression by a polynomial eliminates the 

error function from the first integral solution, and a solution to the second integral can be 

found.  This method fails, due to the fact that the Taylor series expansion over two 

variables gives a valid approximation only in the vicinity of zero, which is less than 

needed for this application.  The approximation has to be valid over a range of values that 

will at least comprise the total diameter of the quadrant plus the width of the beam. 

Three other methods have been tried using Mathematica software. The first one is 

the rational interpolation method that approximates the Gaussian function by a rational 

polynomial.  The user has the option to choose the order of the numerator, and the order 

of the denominator along with a set of points where the approximation has to be perfect.  

The results are illustrated in the Fig. 2.27, where a plot of the error is given. 
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Figure 2.27. Error plot for the rational interpolation method 
 

The figure above clearly demonstrates that this approximation cannot be used 

because the error becomes unacceptably large between the points selected by the user. 

Increasing the number of points will imply increasing the order of the polynomials used 

for the approximation, which is not convenient. 

The second approximation used is Fourier trigonometric series expansion.  This 

method implies approximation of the Gaussian intensity distribution function by a 

combination of cosine and sine functions.  This method also does not work perfectly due 

to the fact that the approximation is good only in the vicinity of one point. The third 

method is the Min-Max approximation, that proved to be unacceptable for the same 

reasons.  

 
B-Numerical model:  

 
Another approach to modeling the quadrant detector is numerical solution of the 

energy integrals. This procedure has been implemented in MATLAB, and output voltages 

of the detector have been computed for various coordinates of the laser beam. The laser 

beam width w has been set to 0.4 mm, and the estimated peak intensity Io at the center of 
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the beam is 10. The plot of the generated data, representing response in the azimuth 

channel versus horizontal and vertical displacement X and Y is presented in Fig. 2.28.  A 

plot of the elevation channel response is given in Fig. 2.29.  

 
 
 

 
Figure 2.28. Azimuth Channel Response (Numerical Model) 
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Figure 2.29. Elevation Channel Response (Numerical Model) 
 

While the numerical model gives accurate results, as can be seen in Fig. 2.28 and 

Fig. 2.29, it is not very convenient for implementation in simulation software. Therefore, 

a good analytical approximation needs to be obtained. The approach that has been used 

relies on the concept of a Radial-Basis-Function (RBF) neural network. The idea behind 

this is to use a set of Gaussian basis function that all have the same input (azimuth and 

elevation displacement). Then a weighted sum of the basis functions is computed to form 

the output signal. The number of Gaussians is 31, and they have been placed according to 

the profile of the surface in Fig. 2.26. The width of each function is set to 250 microns. A 

set of measurement data points has been used to train the neural network (adjust the 

weights associated with each basis function). Then another set of measurement data has 

been used for model validation. The coefficient of determination is equal to 0.98. Fig. 

2.30 presents the analytical approximation model after the training of the neural network.   
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Figure 2.30. Azimuth Channel Response (Analytical Approximation) 

 
Accuracy of the obtained approximation is illustrated in Fig. 2.31, where the error 

between the measurement data and the analytical approximation using an RBF network is 

presented. 

 
Figure 2.31. Analytical Approximation Error 
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2.3. Conclusion 

This part of the project involves experimental characterization of the main 

components of the laser beam positioning system. It has resulted in obtaining the 

simulation models for the Bragg cell and the quadrant detector with all parameters being 

verified experimentally. These models can further be used as a testbed for implementing 

control systems for laser beam positioning. The results obtained in this task can also be 

used for design improvement of the particular components, for example, decreasing 

nonlinear effects of the quadrant detector. 
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3.  BRAGG CELL DESIGN CONSIDERATIONS 
 

Depending on the desired communication link many parameters have to be 

determined to design the hardware components of laser communication systems.  In this 

application the Bit Error Rate (BER) is considered to be a crucial issue to be addressed.  

This is the case especially when acousto-optic deflectors, such as Bragg cells, are used as 

steering devices. The transmitter beam diameter is one of the factors responsible for the 

BER.  Indeed, depending on the link distance between the receiver and the transmitter, 

various beam diameters will yield different BER as shown in Fig. 3.1. It illustrates the 

fact that the BER can drastically change depending on the beam diameter under similar 

communication conditions. 

 

 

           
 

Figure 3.1. BER versus link range for different beam diameters [1] 
 

The steering range allowed is also an important issue in acousto-optic based laser 

communication. As a matter of fact, the steering range known also as the field of regard 
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FORΘ is related to the beam diameter tD , the wavelength of the laser λ , and the time 

bandwidth of the acousto-optic device tbN (spot resolution) through [1]: 

t

tb
FOR D

N*λ
=Θ                                                               (3.1) 

As a result, depending on the desired spot resolution and the steering range, the 

wavelength of the laser to be used and the diameter of the beam can be determined. 

 

3.1.  Interaction Medium Choice 

 

Regarding the material to be used as a medium for the Bragg cell, many 

parameters have to be considered.  The most important ones are the acoustic velocity 

inside the medium, the coefficient of acoustic attenuation, and the figure of merit 

2M responsible for the diffraction efficiency. 

Using the figure of merit 2M , two other important figures of merit are defined. 

The thermal distortion figure of merit thM  defined as [1]:  

ξ
kMn

M th
** 2=                                                             (3.2) 

Where  k - coefficient of thermal conductivity )//( CmW o . 

            ζ - dependence of acoustic velocity on temperature ( Co/1 ). 

A high thermal figure of merit is desired.  The higher is thM , the less distortion of 

the beam wavefront is caused due to incomplete conversion of the electrical signal into 

acoustic waves inside the Bragg cell, and due to the acoustic attenuation inside the 

interaction medium [1]. 

An “optical deflection efficiency” figure of merit deM  defined as [1]: 

    
2

1
2

*Γ
=

v

M
M de ,                                                           (3.3) 

Where v - acoustic velocity inside the medium 

            Γ - acoustic attenuation parameter )//( 2GHzmdB . 
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This figure of merit represents the relation between 2M  and the acoustic 

attenuation parameter. 

  

In the choice of the acousto-optic material to be used, one has to consider both a 

high thermal figure of merit thM  and deflection figure of merit deM .  Generally a trade-

off has to be made to accommodate for both of the figures of merit choosing the material 

that offers the best combination.  Fig. 3.2 shows a combination these two figures of merit 

in six different materials: GaP  in both the longitudinal mode L110 and the shear mode 

S110, 3LiNbO in the L100 mode, and 2TeO in both the L001 and S110 mode. 

 
Figure 3.2. Thermal and Deflection figures of merit for different acousto-optic materials 

[1]. 
 

From Fig. 3.2, one can see that Tellurium Dioxide ( 2TeO ) in the slow shear mode 

is the material that offers the best combination among all the material compared.  It offers 

a high figure of merit 2M allowing high diffraction efficiency and requiring low drive 

power.  Another important advantage is the ability of having a relatively large scanning 
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angle α∆ , thus offering the advantage of having more resolvable spots N [2].  However, 

the drawback of using Tellurium dioxide is its high acoustic attenuation Γ . 

 

After a material has been chosen, more specific issues have to be addressed.  The 

designer has to determine the desired spot resolution, the necessary beam width and the 

allowable bandwidth as well as the center frequency. 

 

3.2.  Choice Of Field Of Regard, Time Bandwidth And Beam Dimensions 

 

The choice of spot resolution (time bandwidth) is important because the entire 

Bragg cell design is dependent on the chosen tbN .  Indeed, the higher is the spot 

resolution the higher is the design complexity.  Moreover as shown in [1], and as 

illustrated in Fig. 3.3 [1], there is a trade-off between all three parameters: the field of 

regard, the beam size and the spot resolution. 

 
Figure 3.3. Field of regard FORΘ versus the beam size for different spot resolutions tbN  

 

On the other hand, the choice of the spot resolution tbN has a direct effect on the 

maximum allowable operating frequencies of the Bragg cell (BW) due to acoustic 

attenuation through the relation [1]: 
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BWv
Ntb **

1017

Γ
≈           (3.4) 

 

Finally, there is also an important relation between the time resolution tbN , the 

bandwidth BW , and the optical beam width oD [1]: 

   
v
BWD

N o
tb

*
=                                                            (3.5) 

 

Using all the equations above, the design procedure for a chosen 500 spots Bragg 

cell in the horizontal channel versus a 200 spot Bragg cell in the vertical channel yields 

the following results: 

 

  1) Horizontal channel: 

From equation (3.4), the allowable bandwidth in the horizontal channel is given by: 

Mhz
Nv

BW H
tb

H 734.14
500*22000*617

10
**

10 1717

≈≈
Γ

≈  

Using this result in equation (3.5) yields the necessary horizontal beam width: 

mm
BW

vN
D

H

H
tbH 21

000,734,14
617*500*

0 ≈==  

Note: By truncating the allowable bandwidth to 13 Mhz , the beam width can be made 

equal to 24 mm .  

The transit time )( trT  representing also the switching time at the horizontal channel can 

finally be computed as: 

sec40sec89.38
617

10*24 3
0 µµ ≈===

−

v
D

T h
tr  

 

 

2) Vertical channel: 

The maximum allowable bandwidth in this channel can be computed using equation 

(3.4): 
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Mhz
Nv

BW V
tb

v 83.36
200*22000*617

10
**

10 1717
max ≈≈

Γ
≈  

However, considering the fact that the beam expansion ratio at the output of the laser 

cavity is 2:1 (horizontal: vertical), the beam vertical width is, thus, determined to be 

equal to 12 mm . So, using this beam width along with the chosen vertical spot resolution 

(200) in equation (3.5) yields the bandwidth of the vertical channel: 

Mhz
D

vN
BW v

o

v
tb

v 283.10
10*12

617*200*
3 ≈==

−
 

Finally, the transit time in this channel is computed by: 

sec20sec44.19
617

10*12 3
0 µµ ≈===

−

v
D

T
v

v
tr  

Note: Combining both the horizontal and vertical transit time gives a total response time 

of 40 µsec in the system yielding a 25KHz tracking bandwidth. 

 

3.3.  Center Frequency Choice And Bragg Cell Design 

 

Bragg cells are usually divided in two classes: isotropic and birefringent devices.  

The material presented in Chapter 1 concentrated on the working principle of isotropic 

devices for they are mostly used as deflectors.  The dynamics involved in birefringent 

devices called also “abnormal deflectors” is more complicated.  However, the use of 

birefringent cells offers the ability of having a larger acoustic bandwidth.  This is due to 

the fact that for the same scanning angle defined earlier by di θθα += , less acoustic 

divergence is needed [2].  This is illustrated in Fig. 3.4.  One can see that in the isotropic 

case, due to the fact that di nn = , both the diffracted and the incident beam vectors end 

on the same circle (see Fig. 4a).  Considering the birefringence of the cell (Fig. 4b), the 

incident beam vector is longer than the diffracted vector.  As a result, the angle aθ∆  

needed to yield the same scanning angle α∆  is smaller in the case of the birefringent 

cell.   
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Figure 3.4. Vector diagrams for isotropic and birefringent cells 

 

This means that the transducer length on the cell can be longer to achieve higher 

diffraction (see Chapter 1). 

The material used as interaction media in the Bragg cells in our example is 

Tellurium Dioxide.  It belongs to the class of birefringent crystals, however; the degree of 

birefringence caused by “optical activity” is considered to be very small for TeO2 [2]. 

The birefringence is due to the fact the index of refraction in for the incident laser 

is not equal to the index of refraction of the output laser dn . More precisely, the index 

in is usually bigger than the output laser index nd.  As a result, the input and output beam 

vectors are no longer equal and [2]: 

             

λ
π
λ
π

d
d

i
i

n
k

n
k

**2

**2

=

=
                         (3.6) 

The inequality of both vectors yields the following momentum triangle for the 

birefringent interaction (see Fig. 3.5). 
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Figure 3.5. Birefringent momentum diagram 

 

Using popular trigonometric relationships for the diagram in Fig. 3.5 we obtain 

 

        
)sin(***2
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−+=
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Solution of (3.7) for sin iθ and sin dθ yields the Dixon equations [1]: 

 

  









−−=









−+=

)(*
*

*
**2

sin

)(*
*

*
**2

sin

22
2

2

22
2

2

di
od

o
d

di
oi

o
i

nn
f

vf
vn

nn
f

vf
vn

λ
λ

θ

λ
λ

θ

      (3.8) 

 

Considering that the difference between in and dn  is small, (3.8) can be simplified to: 
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Using the fact that for small x sinx=x, the previous equations can be written as: 

 

           

vn
f

vn
f

d

o
d

i

o
i

**2

**2
λ

θ

λ
θ

=

=

                                    (3.10) 

Adding both the incident angle and the deflection angle yields the angle between the 

incident laser and the diffracted laser given by [2]: 

 

      
vn
f

eq

o
di *

*λ
θθα =+=                  (3.11) 

Where 

          
di

di
eq nn

nn
n

+
=

*
*2                             (3.12) 

 

As a result, one can see that the relation linking the angle between the incident and 

diffracted beams to the input frequency still holds with the exception of the small change 

introduced by the difference in the refraction index as shown in (3.12).  From equation 

(3.8), one can notice that if in  is exactly equal to dn , then we are in the isotropic case as 

has been described earlier.  Using equation (3.8), the tangential or extreme value 

frequency is defined as the frequency at which the deflection angle is zero whereas the 

incident angle reaches a maximum [2]: 

 

       2
122 ][ di

o
o nnvf −=

λ
                          (3.13) 

 

The choice of center frequency for the Bragg cells is a challenging task in 

birefringent cells.  This is due to the fact that the center frequency should accommodate 

for the required bandwidth without reaching the degenerate frequency of the cell as will 

be seen later. 
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There are several methods that can be used to compute the center frequency, and 

two main design solutions to be considered.  There is the Non-Rotated method and the 

Rotated method.  In the non-rotated method, the cell is designed so that it is not optically 

rotated, but is acoustically rotated. This means that in the case of non-rotated cells (also 

known as off-axis cells), the sound wave vector is no longer parallel to the [110] plane 

but is rather rotated by an angle aθ  as illustrated in Fig. 3.6.  In the rotated cell, the Bragg 

cell is optically rotated, which means that the acousto optic interaction does now occur in 

a rotated plane rather than in the conventional z-plane.   

 

 
Figure 3.6. Off-axis illustration for non-rotated Bragg cell[2] 

 

From the previous figure, we have  

           
)(

)(

2

1

ad

ai

θθθ

θθθ

−±=

−±=
      (3.14) 

 

The Dixon equation (3.8) can be rewritten taking in consideration the angles ,, 1θθ a  and 

2θ :  
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Design of the non-rotated Bragg cells consists of defining the relations between the 

angles ,, 1θθ a 2θ  and the operating frequency f .  However, since we have two equations 

and three variables, there are two ways of solving for the angles.  

 

a- First solution method: 

The “first solution method” implies fixing the angle aθ , and then solving for 

1θ and 2θ with respect to f .  After solving for these two angles, the degenerate frequency 

is determined, and the center frequency is chosen. 

The relations between the angles and the frequency are solved for both the cases 

where the sign is positive and negative in (3.14). The solution has been conducted in [2], 

where 
o

a 6=θ , and nmo 8.632=λ .  Fig. 3.7 illustrates the results found. 

 
Figure 3.7. First solution method for off axis device with nm8.632=λ  and o

a 6=θ  

/(MHz) 
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At first, we should note that we 
)2,1(

of  are defined as the tangential or extreme 

frequencies.  At these frequencies, the deflection angle is zero, and the angles 
)2,1(

1θ reach 

their maximum value.  One also should note that the degenerate frequency is given at the 

intersection of the curves )()( )2(
2

)1(
2 fandf θθ , it is denoted df .  It is the frequency at 

which the incident laser vector ik  is diffracted twice.  It is diffracted as dk  and redirected 

as 
'
ik .  This is illustrated in Fig. 3.8 for on-axis devices where the sound vector is dK , at 

the degenerate frequency df . 

 
Figure 3.8. Illustration of the rediffraction at the degenerate frequency df for on-axis 

Bragg cells 
 

The same phenomenon is illustrated in Fig. 3.9 for off-axis devices where the 

sound wave propagation direction has been rotated by an angle aθ . 
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Figure 3.9. Illustration of the rediffraction at the degenerate frequency df for off-axis 

Bragg cells 
 

Note: To avoid the degeneracy, the center frequency is chosen so that the bandwidth does 

not include the frequency df . 

 
b- Second solution method: 

 
The second solution method is based on the fact that this time the fixed angle is 

1θ , and a relation between aθ , 2θ and f  is found.  This solution is generally preferred 

over the “first solution method” because it gives details on the actual design of the Bragg 

cell. The idea here is to set the angle 1θ slightly smaller than 10θ (the two angles are 

negative), and solve for the relation fa −θ for different values of 1θ .  The highest 

frequency of the operating bandwidth should also be kept less than the degenerate 

frequency df .  The following figure adopted from [2] represents three solutions for 

fa −θ for three values of 
ooo and 71.569.5,67.51 =θ .  It also represents the relation 

between the angle 2θ and the frequency f  illustrating a linear relation between the 

deflection angle and the operating frequency at 
o69.51 =θ  given that: 
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          )( 2 ad θθθ −±=                                                   (3.16) 

 
Figure 3.10. The second solution method applied to the off axis Bragg cell design 

with nmo 8.632=λ  and an o8 off axis angle as per[2]. 
 

Using the following table [2], representing three solutions to the design problem 

using the “second solution method”, we can see that as the value 1θ  decreases the 

bandwidth increases going from 76 to 97 MHz. However the highest frequency in the 

range increases from 138 to 153 MHz exceeding the degenerate frequency of 148 MHz 

that can be found using the first solution method [2].  Thus, taking 1θ  equal to 
o69.5 seems to be the right choice in this case offering a bandwidth equal to 87 MHz and 

an acoustic divergence angle given by 
oo

a 23.0115.0*2*2 0 ==δθ and MHzf o 94=  as 

can be found using the first solution method. 
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Table 3.1. Second solution characteristic parameter definition 
 

(deg)a

−

θ  
 

(deg)1θ  

 

(deg)0aδθ  

 

)(MHzf L  

 

)(MHzf H  

 

)(MHzf∆  

8 5.71 0.088 62 138 76 

8 5.69 0.115 59 146 87 

8 5.67 0.141 56 153 97 

 

As stated earlier, using the second solution method is more advantageous in the 

sense that it gives direct information on the Bragg cell design itself.  Indeed, the 

transducer length, also called interaction length of the cell can now be determined.  The 

interaction length of the cell is given by the following equation: 

  
0

*
a

oRL
δθ
Λ

=        (3.17) 

Where: 

    
o

o f
v

=Λ           (3.18) 

So L is given by: 

o
aof

vRL
δθ*

*=                             (3.19) 

Where R depends on the allowable passband nonuniformity.  The allowable passband 

nonuniformity is 3dB, but in the case of two-dimensional steering system, it is taken as 

1.5 dB for each one of the two cells [2].  Table 3.2 gives the values of R depending on the 

allowable nonuniformity.  The value of v , the velocity of the acoustic wave is dependent 

on the off axis angle chose.  It is given by [2]: 

 

)(sin)(cos)( 22222
azata vvv θθθ +=                 (3.20) 

Where     
smv

smv

z

t

µµ
µµ
/2104

/616
=
=

 

Different values of v corresponding to different angles aθ have been computed in 

[2], and the results are presented in Table 3.3. 
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Table 3.2. Value of R versus allowable uniformities 
 

Allowable non-uniformity (dB) Value of R 

1 0.25 

1.5 0.32 

2 0.37 

3 0.45 

 

Table 3.3. Velocity v versus off axis angle aθ  
 

)(Degaθ  )(θv in sm µµ /  

0 616 

1 617 

2 620 

3 625 

5 640 

6 651 

7 663 

8 677 

9 692 

10 708 

 

As an illustration, considering an allowable nonuniformity of 3dB, and a velocity 

usumv /677= with an off axis angle of 8 degrees, and using (3.18), we get: 

mmL 612.1
)180

*115.0(*94000000
677*45.0 ==

π
 

 

In the case of the Bragg cell used in our laboratory, acoustical rotation is done to 

accommodate for both the desired center frequency, and the desired bandwidth. The 

acoustic rotation of each cell is o2 [1].  In order to attenuate any reflection of the 
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propagating wave once it reaches the top of the cell, an appropriate absorbing material is 

used to coat the top surface.   

The center frequency has been chosen to be 24 MHz for both cells.  As a result, 

the frequency range for the horizontal cell is from 17 MHz to 31 MHz, for the vertical 

cell - from 18 MHz to 30 MHz.  The choice of the same center frequency for both cells 

facilitates the frequency generation by the driver electronics.  The Driver electronics uses 

a Direct-Digital-Synthesis (DDS) card to produce the desired frequencies. These are first 

digitally generated then converted to analog signals through a “ Stanford Telecom 2272A 

DDS board.” 

The DDS card has a frequency clock of 160 MHz, and offers a 610 Hz resolution.   

The DDS clock higher than the tracking frequency of the cell, application of TDMF 

(Time Division multiplexing of frequencies) could offer multiple beam generation at the 

same time [1]. The whole system is PC controlled, including the laser and camera 

switching ON/OFF. 

 
3.4. Design And Materials Alternatives 

 

1- Rotated cells 

Another design procedure consists of designing cells that are optically rotated.  

Using optically rotated cells offers many advantages of which the main ones are the fact 

that the acoustic bandwidth can be increased without a loss of deflection efficiency as can 

be observed in the off-axis non-rotated cells.  Indeed, in non-rotated off-axis cells, the 

larger is the off-axis angle, the higher is the velocity of the acoustic wave.  As a result, 

the figure of merit 2M defined for birefringent cells as follows becomes smaller as the 

velocity increases causing the deflection efficiency to decrease. 

3

233

2 V
pnn

M di

ρ
=  

Fig. 3.11 adopted from [2] illustrates the AO interaction plane, as a rotation by α  

is achieved around the [110] axis: 
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Figure 3.11. Rotated acousto-optic interaction plane 
 

In rotated cells, we also distinguish between on-axis devices and off-axis devices.  

Although the whole derivation of the design process is not given, the main procedures, 

equations and discussions are described below. 

First the Dixon equations as presented in (3.15) can be rewritten as: 
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 One of the main difficulties solving the Dixon equations for the case of 

rotated cells is to determine the ),( av θφ depending on the rotation angle φ and the off-

axis angle aθ . Solving for the exact value of v can be tedious and is analytically complex.  

However, as presented in [2], the equation given in (3.20) could be used as a good 

approximation in the case where the value of the pair ),( aθφ  is below the curve in Fig. 

3.12. For some other pairs not present under the curve, Table 3.4 presents the accurate 

velocity value to be used. 

Y[UOJ 

Z[OOIJ 
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Figure 3.12. Region (under the curve) where (3.20) could be used with less than 1 percent 

approximation error 
 

 

Table 3.4. Velocity values for pairs where the approximation is not to be used 
 

),( aθφ  in 0  )/(),( sminv aθφ  

(8,8) 674 

(10,10) 750 

 

The two cases: on-axis and off-axis designs are now considered. 

 

a - On-axis rotated cell: 

In the case of On-axis rotated cells, in order to find the degenerate frequency df , 

as well as the maximum value 10θ , the following equations are used (these are also valid 

for on-axis non rotated cells)[2]: 
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The value of δ depends on the optical properties of the material.  It is given by: 

 
o

o

n**2
*

π
ρλ

δ =                                                   (3.25) 

Where oλ - wavelength of the laser in mµ  

ρ - constant dependent on the operating laser wavelength as well as on the   

material properties.  It is expressed in mrad µ/ . 

on  - ordinary index of refraction of the cell at a given frequency. 

 

Using (3.25) in (3.24) and solving (3.23) yields both the degenerate frequency and 

the maximum angle value 10θ .  Then using the second solution method, using different 

values around 10θ , one can solve for fa −θ , and find the acoustic divergence angle 

aoδθ necessary to have the desired bandwidth.  Finally using (3.17), the interaction 

length L can be determined. 

 

Fig. 3.12 illustrates the transducer position on a rotated Tellurium dioxide Bragg 

cell. 
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Figure 3.13. Transducer position on a rotated cell 

 

b- Rotated off-axis cells: 

The difference in designing off-axis cells is mainly in the determination of the 

value of the velocity ),( av θφ .  As explained earlier, for the region under the curve in Fig. 

3.12, the approximation in (3.20) can be used; otherwise, a more tedious derivation 

(Solution of the eigenvalue characteristic equation…) should be used to find the accurate 
v .  Table 3.4 gives the computed velocity [2] for two pairs outside the area where the 

approximation can be used. 

 After v  has been found, the first solution method and then the second 

solution method can be used to obtain ffff LHo ∆,,, and the acoustic divergence angle 

aoδθ , before computing the interaction length L. 

 

2- Material choice: 

Tellurium dioxide has been shown to offer the main desirable properties with the 

drawback of having a high acoustic attenuation.  For a lower acoustic attenuation, a 

relatively new material “mercurous chloride” 22ClHg  could be used instead of tellurium 
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dioxide 2TeO .  It offers a high figure of merit KgsM /*10*1060 315
2

−= and slow shear 

mode with a velocity of sm /347 , as well as a coefficient of acoustic attenuation of 
2*/7.13 GHzsdB µ .  Other interesting figures for the mercurous chloride are [2]: 

621.2
962.1

2538.0:

=
=

−

e

o

n
n

mrangeonTransmissi µ
 

Note: the transmission range of tellurium dioxide is only from mto µ0.535.0 . 

 

3.5.  Application Of Genetic Algorithms For Design Optimization Of A Bragg Cell 

 

Mathematical model of a Bragg cell, reflecting the physical phenomena behind its 

operation, provides a description of the complex interrelation between various parameters 

of the device and characteristics of its performance.  Such a model has a number of 

applications including accurate assessment of the system’s performance, analysis of 

sensitivity of particular performance characteristics to design parameters, and providing a 

simulation testbed for the analysis of the entire beam steerer.  Moreover, the model 

presents a basis for the formalization of the optimal design problem of a Bragg cell, 

providing mathematical formulation for particular constraints and optimization criteria. 

Indeed, the design problem could be defined as the following nonlinear constrained 

optimization problem 

Min C(X)/[X1#X#X2, A#W(X)#B] 

 

Where X – a vector of design parameters that customarily are chosen by the device   

            designer in order to assure certain performance characteristics of the design, 

X1#X#X2 – a set of conditions limiting numerical values of the design parameters  

reflecting the feasibility considerations, 

W(X) – is a vector-function representing operational characteristics of the device  

as functions of design parameters,   

A#W(X)#B – is a set of conditions presenting design specifications in terms of 

common figures of merit, and  
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C(X) – is one of the operational characteristics of the device (or a linear  

combination of several operational characteristics taken with appropriate weights)  

designated as the design criterion.  

One can realize that expressions W(X) and C(X) reflect laws of physics, and in 

combination constitute the mathematical model of the device. Any set of particular 

numerical values of the vector of design parameters, X=X*, constitutes a solution of the 

design problem.  Any set of particular numerical values of the vector of design 

parameters, X=X**, that satisfies the feasibility conditions and the design specifications, 

i.e. X1#X**#X2, A#P(X**)#B, constitutes an acceptable solution of the design 

problem. The criterion provides a numerical measure of goodness to each acceptable 

solution of the design problem, facilitating the selection of the optimal solution, 

X=XOPT.  While any designer is intended to obtain a design solution as close to the 

optimal solution as possible, the “goodness” of the design is based upon his/her 

experience and intuition and truly optimal designs still is just a matter of good intentions. 

There are two major factors preventing us from finding the optimal solution of a 

design problem. The first one is the complexity of solving a nonlinear constrained 

optimization problem. The second factor is that, typically, a nonlinear optimization 

problem has many “local” optimal solutions among those the global minimum should be 

found.  The first difficulty we address by converting the original constrained optimization 

problem into an unconstrained optimization problem via the method of penalty functions 

as follows 

Min L(X) 

where  L(X)=C(X)+P1(X)+P2(X) – is a loss function, 

P1(X) and P2(X)– are penalty function defined as follows, 

If [X1#X#X2] P1(X)=0 

If [X1>X] P1(X) = (X1-X )TQ(X1-X )  

If [X>X2] P1(X) = (X2-X )TQ(X2-X ) 

and 

If[A#W(X)#B] P2(X)=0 

If[A>W(X)] P2(X)= [A-W(X)]TR[A-W(X)] 

If[W(X)>B] P2(X)= [B-W(X)]TR[B-W(X)], 
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T  - is a transpose symbol, and Q>>1 and R>>1 are weight coefficients. 

One can realize that any successful minimization effort would result in the 

“enforcing” the constraints on the vector of design parameters X. 

Proliferation of genetic optimization algorithms, possessing the advantages of 

known random and direct search optimization procedures, combined with the availability 

of high performance computers alleviated the second obstacle in the way of the formal 

solution of design optimization problems.  The following diagram illustrates application 

of a genetic algorithm to the solution of a design optimization problem. 
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FORMING THE
INITIAL GENERATION

PARENTING

MUTATION

FORMING THE
INITIAL GRID

FORMING A
SUCCESSFUL 
GENERATION

TERMINATION
CONDITIONS

OUTPUT
YES

NO

DESIGN 
OPTIMIZATION

PROBLEM
(CONSTRAINTS

AND
CRITERION)

FORMULATED
ON THE BASIS
OF THE MATH.

MODEL
OF THE
DEVICE

AND
REPRESENTED

BY A 
SIMULATION 

SETUP

 
Figure 3.14  Genetic Optimization of Optimal Design 

 

Mathematical model developed for the Bragg cell can be used at the design stage 

for selecting physical parameters of this system component. The objective is to improve 

performance while satisfying some constraints posed by the design specifications. This 

calls for running a constrained optimization procedure. Out of a number of approaches to 

minimizing (maximizing) a performance criterion we have selected a genetic algorithm 

procedure. Definition of the problem is as follows. We will run optimization for an 

acoustically rotated off-axis Bragg cell. The parameters to be selected by the routine are: 
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Θa – off-axis angle, rad; 

L – transducer length, m; 

H – transducer height, m; 

Pa – acoustic power, W; 

Θi – incidence angle, rad. 

 

The following set of equations describes behavior of the acousto-optic device. 

The acoustic velocity can be expressed as follows. 

azat vvv Θ+Θ= 22222 sincos  

For TeO2 vt=616 m/sec, vz=2104 m/sec [1], therefore 

                                              aav Θ+Θ= 2222 sin2104cos616                      (3.26) 

The deflection figure of merit 

3

233

2 v
pnnM di

ρ
=  

From [2] we have nI=2.26354, nd=2.25658, p=0.1126, ρ=5990 kg/m3; therefore, 

                                                         3

4

2
10*82.2

v
M

−

=                                              (3.27) 

 

The incidence angle corresponding to the Bragg condition can be found as 

vn
f

i

c
i 2

λ
=Θ  

Hence the center frequency fc 

                                             i
ii

c v
vn

f Θ=
Θ

= 610*757.6
2

λ
                                (3.28) 

As has been mentioned previously, in the case of an off-axis cell design the entire 

acoustic frequency range should be below the degenerate frequency fd. Fig. 3.7 illustrates 

a graphical approach to finding fd. Values of the degenerate frequency have been 

tabulated in [2] for different values of the off-axis angle Θa. For practical purposes we 
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have generated an analytical expression for fd(Θa) for a given value of the optical 

wavelength using the Least Square Method approach as follows: 

fd=0.9161*106Θa
2+6.3461*106Θa+39*106 

We select the maximum operating frequency to be 2 MHz below the degenerate 

frequency, therefore 

fmax=0.9161*106Θa
2+6.3461*106Θa+37*106 

Acoustic bandwidth can be found as  

                                                          ∆f =  2(fmax - fc)                                                  (3.29) 

Steering range 

                                               
v
f

nv
f ∆
=

∆
=∆Θ −710*96.2λ

                                    (3.30) 

From [2] the maximum deflection angle is 
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Finally, diffraction efficiency is found as 
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The Klein-Cook parameter 
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Following is a list of physical constraints imposed by the design specifications: 

 

0 ≤ Θa ≤ 0.175 rad (100) 

0.01 m ≤ L ≤ 0.1 m 

0.005 m ≤ H ≤ 0.1 m 

0 ≤ Pa ≤ 1 W 

0 ≤ ΘI ≤ 0.175 rad (100) 



 

 

 

70

M2 ≥ 10-12 

0.8 ≤ η ≤ 1 

∆Θ ≥ 0.0175 rad (10) 

 

Optimization using the genetic algorithm and mathematical model of the Bragg 

cell described by (3.26) – (3.33) has been performed twice. In the first case we maximize 

the steering range ∆Θ, in the second – efficiency η. The results are presented in Table 

3.5. 

 

Table 3.5. Genetic optimization for off- axis acoustically rotated device 
 

  η → max ∆Θ → max 

Off-axis angle Θa, rad           (X1) 0.107 (6.130) 0.093 (5.330) 

Transducer length L, m         (X2) 0.019 0.019 

Transducer height H, m        (X3) 0.062 0.091 

Acoustic power, W               (X4) 0.7 0.9 V
ar

ia
bl

es
 o

f 

op
tim

iz
at

io
n 

Incidence angle, ΘI                       (X5) 0.006 (0.340) 0.005 (0.290) 

Steering range ∆Θ, rad 0.0106 (0.60) 0.015 (0.950) 

Diffraction efficiency η 1 0.997 

Klein-Cook parameter Q 86π 89π 

Center frequency fc, MHz 26 21.3 Sy
st

em
 

ch
ar

ac
te

ris
tic

s 

Acoustic bandwidth ∆f, MHz 23.37 32.58 

 

As one can see from Table 3.5, selection of the optimization criterion affects the 

results. It is also possible to maximize (minimize) a linear combination of several system 

characteristics taken with appropriate weights, then the resultant design presents a 

compromise between several, often mutually-contradictive, system requirements. It 

should also be noted that the acoustic power in Table 3.5 is calculated for the deflection 

angle Θd = 0. As one can see from (3.32), increase in the deflection angle requires to use 

less power therefore, Table 3.5 features the maximum power consumption. Acoustic 
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attenuation reaches its highest value at the highest acoustic frequency and could be found 

as [2], 

                                                   α=α0fmax,                                                        (3.34) 

where α0 – acoustic attenuation at 1 GHz. For TeO2 this value is 17.9 dB/µsec*GHz2. 

The highest acoustic frequency for the first optimization is 37.69 MHz, for the second – 

37.59 MHz; therefore, the attenuation values are 0.0254 and 0.0253dB/µsec, respectively, 

which is very small numbers. The genetic algorithm optimization can potentially be used 

for more complicated tasks. For example, diffraction efficiency presented in Table 3.5 

has been calculated for a certain value of acoustic power. However, as the sound wave 

propagates inside the crystal it attenuates, thus changing the value of diffraction 

efficiency in the direction of propagation. A cumulative criterion that accounts for 

different diffraction efficiencies as a function of distance from the transducer can be used. 

It is also possible to have more variable parameters and consider several characteristics 

that need to be optimized at a time.  

 
3.6. Other Research Aspects 

 
a - Multichannel Bragg cells  

Using the same cell as a support to multiple beam steering has many interesting 

applications.  The idea is to have different parallel channels taking different inputs and 

steering the input beam separately in different directions.  The design procedure for each 

channel is the same as the one discussed for the regular cell.  However, more design 

considerations are necessary.  The distance between the transducers of two adjacent 

channels is critical to prevent any cross talking between the channels. This issue has been 

addressed in [3]. One way of limiting the cross talk is increasing spacing between the 

channels; however, doing so reduces the number of channels that can be used, reducing 

the throughput and overall diffraction efficiency. Another way implies the apodization of 

the transducer.  Doing so reduces the sidelobes of the acoustic beam traveling though the 

cell, which minimizes the possibility of interference between the channels.  The 

drawback of such a technique, as discussed in [3], is the fact that apodizing the transducer 

reduces the time aperture of the cell because the width of the main acoustic beam 

increases.  Finally, [3] presents another way of preventing the cross talk.  It consists of 
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using materials that exhibits self-collimation modes. In self-collimated modes, the 

Poynting vector describing the power flow in the material is orthogonal to the transducer 

reducing the acoustic divergence and, thus, the channels cross talk.  The materials 

exhibiting such modes have generally an anisotropy parameter 5.0≈b . Pape in [3] shows 

that using Gallium phosphide (GaP) presents both acceptable figure of merit and a good 

parameter b=0.487 offering an orthogonal acoustic direction of propagation.  

 

b- Electro-optic Bragg cells 

Some acousto-optic materials have allowed the reduction of the response time to 

the order of nanoseconds.  Still, this reduction in the response time has decreased the 

diffraction efficiencies of the cells.  One way to get both very high response time and 

high diffraction efficiency is the use of electro-optics.  Indeed, by applying a voltage to 

two cathodes on top and bottom of the cell, and by special arrangements of the electrical 

domains in the cell, a grating is created inside the cell, and high response times can be 

achieved (1 nanosecond).  Investigation of the behavior of such electro optic Bragg cells 

has been presented in [4].  Rise time of the order of 1 nanoseconds has been reached 

using a 633nm HeNe laser by applying an electric field on a periodically poled cell 

)( 3LiNbO  between the top and bottom electrodes.  

  

c- Monolithic two dimensional deflector 

The idea is to achieve two-dimensional deflection using only one cell instead of 

two in series with one cell orthogonal to the other one.  Barosci in [5] investigates the 

idea by considering the design specifications of a multichannel monolithic Bragg cell. 

The principle is to have the incident light diffracted in the horizontal direction, then have 

the diffracted x-light rediffracted in the vertical direction inside the same cell.  Figure 

3.13 [5] illustrates the working principle of a 2-dimensional deflector for birefringent 

2TeO .    
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Figure 3.15. The wave-vector diagram of the 2D interaction 

 
The bandwidths for the X and Y directions are given by 
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Where  v - sound velocity 

L - interaction length 

eo nn , - ordinary and extraordinary indices of refraction of the cell. 

and 22
oeo nnvf −=

λ
is the “acoustic midband frequency” as defined by [5]. 

There is an asymmetry between the two channels that is due to the fact that the 

interaction bandwidths are different, which can be minimized by using different 

interaction length [5].  Another issue is the use of the off-axis mode to avoid degenerate 

frequencies that cause rediffraction of the diffracted light as explained earlier. 

Barosci then investigates the use of the 2-dimensional cell as a multichannel 

Bragg cell emphasizing on design parameters such as the channel cross talk, the active 

channel width and the total aperture of the cell.  The total aperture of the cell is limited by 

the high attenuation factor, while the active channel width is responsible for the 

resolution.  On the other hand, proper spacing between the channels should be provided 

to avoid unwanted interaction. 
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3.7.  Conclusion 

 

In this part of the project the main issues of the acousto-optic Bragg cell design 

and different design alternatives have been addressed. Recommendations for satisfying 

certain specifications such as steering range, diffraction efficiency, resolution, etc. are 

formulated. Two design approaches with acoustical and optical rotation have been 

considered. While some of the design methods involve graphical solution, and are rather 

complicated, we have developed a formal optimal design procedure utilizing the 

developed mathematical model of a Bragg cell and a genetic optimization tool.  The 

procedure enables a designer to select a unique combination of system parameters that 

allow to meet design specifications and maximize the chosen performance criteria at the 

same time.  The optimal design procedure could be recommended for many other tasks. 



 

 

 

75

REFERENCES 
 
[1] Harry Presley,  “High efficiency large time-bandwidth acousto-optic laser 

deflector for free space optical communications,” Harris Corp. Technical Report. 

 

[2] J. Xu, R. Stroud, “Acousto-Optic Devices: Principles, Design and Application,” 

John Wiley & Sons, 1992.  

 

[3] Dennis R. Pape,” Multichannel Bragg cells design, performance, and 

applications”, Optical Engineering, Vol.10, pp 2148-2157, (1992). 

 

[4] H. Gnewuch, C. Pannell, G. Ross, P. Smith, H. Geiger, “Nanoseconds response of 

Bragg deflectors in periodically poled 3LiNbO ”, IEEE Photonics technology 

Letters, Vol. 10, pp. 1730-1732, (1998). 

 

[5] A. Barosci, L. jakab, I. Verhas, P. Richter, “Two-dimensional acoustooptic light 

diffraction and its applications”, Integrated Computer-Aided Engineering, Vol. 3, 

pp. 108-116, (1996).  



 

 

 

76

4.  COMPARATIVE ANALYSIS OF ACOUSTO-OPTIC AND PIEZO-

ELECTRIC STEERING TECHNOLOGY 
 

Properties of the acousto-optic Bragg cell as a steering device have been 

extensively studied, and the results are presented in Chapters 1 – 3. Another approach 

that can be used for the same type of applications is piezo-electric technology. One of its 

many advantages is high resolution. It is possible to make extremely fine adjustment in 

the nm range [1]. 

 

4.1.  Piezo-Electric Steering System Components 

 

Piezo-electric mirrors are mirrors that depend on piezo-translators for positioning. 

The electric field applied to a translator applies a torque to an aligned dipole which 

causes a change in length in the monocrystalline regions. Typically high voltages (1000-

2000 V) are used to generate these fields [2]. Such high voltages are a concern for a 

designer due to the possibility of arcing aboard the communication platform. Therefore, 

low-voltage piezo-translators are used. They have about the same expansion range, but 

are more susceptible to temperature changes.  

The experimental analysis has been performed using a Physik Instrumente S-320 

tree-axis tilting mirror. The tilting plate supporting the mirror substrate rests on three 

piezo-electric translators that can be addressed individually. Collective expansion of all 

three piezo-electric elements results in linear movement. Individual operation provides 

tilting movement on two orthogonal axes, as well as linear translation.   

The piezo-translators using low voltage technology require operating voltages in 

the range from –20 V to +120V [1]. Compared to the high-voltage models they have 

larger capacities and require correspondingly larger currents to change their expansion. 

The task of providing these currents is accomplished with a piezo driver P-863.10. The 

velocity of the expansion depends on the maximum output current, and; therefore, on the 

output power of the piezo driver. The driver can be used in one of the two modes of 

operation: 
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- manual operation: The output voltage is set by a potentiometer. Therefore, it is 

possible to set any expansion value of the translator within the operation 

range.  

- controlled operation: The required expansion of the translator is determined 

by an external control voltage. An offset can be added at the same time. 

 
It has been mentioned that the piezo-translators are capable of very fine 

adjustments. However, in some cases hysteresis and drift can interfere. The hysteresis 

effect may cause a maximum difference of 10 – 15% of the nominal expansion. The drift 

is about 1 – 2% of the positioning movement per time decade [1]. Both these phenomena 

are properties of the piezo-effect and cannot be avoided. Therefore, they need to be 

automatically compensated by using sensors and operating in closed loop. The maximum 

accuracy depends on the sensors and control electronics. Strain gage sensors applied 

directly to the piezo-ceramic are used in the tilting mirror. They are switched as full 

bridges, and; therefore, not only capable of compensating hysteresis and drift, but also 

elastic deformations. The electronics operating the sensors is a piezo-controller E-808. It 

is a 3-axis control unit that allows highly accurate expansion of the three piezo-translators 

with integrated position sensors. The piezo-controller corrects expansion values by 

adjusting voltages.  

 
4.2.  Piezo-Electric Mirror Model 

 
The mathematical model of the piezo-electric mirror and the control circuitry 

described in Section 4.1 is based on a series of laboratory experiments. A mathematical 

model of the system is described as follows 
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A square wave has been applied to each input channel and the output of the 

quadrant detector representing azimuth and elevation channel response is recorded. 

 
The experimentation has been performed as follows: 
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1) a 1 Hz square wave voltage signal with a magnitude of 0.02 V has been 

applied to the input of channel 1. Responses A(s)=gA1(s)*V1(s) and 

E(S)=gE1(s)*V1(s) have been recorded. The choice of 1 Hz input signal 

frequency provides enough time for the signals to reach the steady-state 

values. The amplitude of 0.02 V has been selected to ensure that we operate 

with displacement corresponding to the linear range of the quadrant detector. 

The recorded data contains complete information for obtaining transfer 

functions gA1(s) and gE1(s). 

2) a 1 Hz square wave voltage signal with a magnitude of 0.02 V has been 

applied to the input of channel 2. Responses A(s)=gA2(s)*V2(s) and 

E(S)=gE2(s)*V2(s) have been recorded. The recorded data contains complete 

information for obtaining transfer functions gA2(s) and gE2(s). 

3) a 1 Hz square wave voltage signal with a magnitude of 0.02 V has been 

applied to the input of channel 3. Responses A(s)=gA3(s)*V3(s) and 

E(S)=gE3(s)*V3(s) have been recorded. The recorded data contains complete 

information for obtaining transfer functions gA3(s) and gE3(s). 

4) the experiments described in steps 1), 2), and 3) have been repeated with a 

square wave voltage signal with a magnitude of 0.04 V to detect possible 

nonlinearities in the system response. The results ensured that we operate in 

the linear range, and the piezo-controller compensates for hysteresis and drift. 

 
Details of the experimentation are presented in Fig. 4.1, Fig. 4.2, and Fig. 4.3. 

They  illustrate response of the mirror system to a step signal applied to channel1, 

channel 2, and channel 3, respectively.  
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Figure 4.1. Step response for Channel 1 
 

 
Figure 4.2. Step response for Channel 2 
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Figure 4.3. Step response for Channel 3 
 
The measurements reveal a significant degree in cross coupling. It can be seen 

that for each experiment a signal applied to one channel results in response in both 

outputs. The beat present in the channel 2 and channel 3 responses serves as an evidence 

of exchange of bending modes. This corresponds to the situation when the system has 3 

zeros and 4 poles. A combination of second order systems has been used to model each 

dynamic channel. Parameters of these systems have been manually tuned until response 

of the model resembled experimentation results. Fig. 4.4 presents a simulation setup for 

the linear model obtained as a result of experimentation. 
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Figure 4.4. VISSIM simulation model of the piezo-electric mirror 
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Figure 4.5. Simulated step response for Channel 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6. Simulated step response for Channel 2 
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Figure 4.7. Simulated step response for Channel 3 
 
 
4.3.  Comparative Analysis 

 
The two technologies: acousto-optic and piezo-electric can be compared using 

several characteristics. Both acousto-optic Bragg cells and piezo-electric mirrors are 

advanced deflector devices. Their advantage versus mechanical steering mirrors is 

smaller size, weight, and power consumption. The principle of acousto-optic deflection is 

better in the sense that the system does not have any moving mechanical parts. Therefore, 

Bragg cell response time is faster, and the bandwidth is larger. The system dynamics can 

be described by a first-order transfer function; therefore, there is no overshoot in system 

response.  

The piezo-electric mirror not only experiences overshoot, but also exhibits 

oscillations (due to very low dumping ratio) and cross coupling between the dynamic 

channels. The Bragg cell-based steering systems do not have any coupling, but each 

device is capable of deflecting the beam only in one direction (vertical or horizontal). As 

a result a combination of two devices is necessary to achieve two-dimensional steering.  

Resolution of both devices essentially depends on the driver electronics. For the 

piezo-electric mirror it is a function of the voltage step that the piezo-driver can produce 
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and also accuracy of the sensors integrated on the piezo-translators. For the Bragg cell it 

depends on the frequency step of the RF signal applied to the transducer. Acousto-optic 

cell input-output characteristics are linear for the case when it operates in the near Bragg 

regime. The piezo-translators have non-linear response (due to hysteresis and drift) that 

needs to be constantly corrected. The fact that the Bragg cell driver operates in the open 

loop mode (it does not have a feedback like sensor signals for the piezo-controller) makes 

it more reliable.  

Optical efficiency of the piezo-electric mirror is better, and most of the incident 

light is deflected. Acousto-optic cells have larger optical losses (up to 20%). However, 

this value can be manipulated with proper design steps. Optimal selection of the physical 

dimensions, as well as acoustic power can maximize diffraction efficiency. The 

advantage of the mirror is that its optical efficiency is independent of the steering angle. 

For the Bragg cell it depends on the acoustic frequency, and as a rule, decreases with 

higher deflection angles.  

Another parameter for comparison is power consumption. The Bragg cell has no 

moving parts, and usually requires less power per channel. In addition, the response time 

of this device depends mostly on material properties and beam size. Contrary to the 

acousto-optic devices, the speed of expansion of the piezo-translators depends on the 

power provided by the driver. The power of the Bragg cell; however, may need some 

adjustment in the process of operation, if, depending on the acoustic frequency, 

diffraction efficiency is being maximized.  

Dimensions of the two types of steering devices, as well as their weights are very 

close. 

Finally, the last characteristic for qualitative comparison is the field-of-regard, or 

steering range. Even though the piezo-electric mirror is a mechanical system, its range of 

operation is very small due to expansion limits of the piezo-translators. The Bragg 

deflectors with their usual steering range of 10 or less are still more advantageous in 

terms of this characteristic. 

 The comparison of two systems installed in our laboratory is summarized in Table 4.1. 
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Table 4.1. Properties of Bragg cells and piezo-electric mirrors 
 

Parameter Bragg Cell Piezo-Electric Mirror 
Bandwidth, Hz ≈15000 ≈500 

Resolution, µrad depends on driver ≈5 

Optical Efficiency ≈84% ≥95% 

Power, W 0.4 per channel 5 per channel 

Weight small small 

Size (unmounted) 42x34x30 mm 40x20x20 mm 

Steering Range, mrad ≈5.8 ≈2 

Cross-Coupling almost none significant 

 
Note that resolution of the Bragg cell is not specified, since all experiments have been 

conducted using a driver with limited acoustic frequency resolution. Steering resolution 

of the piezo-electric mirror is limited by accuracy of the integrated expansion sensors. 

 
4.4.  Conclusion 

 
In this part of the project a comparison between two advanced steering devices: 

Bragg cells and piezo-electric mirrors has been performed. A series of experiments has 

been conducted to obtain dynamic response of the piezo-electric steerer. A mathematical 

model based on the experimental data has been developed. Comparative analysis has 

been performed in terms of such characteristics as tracking bandwidth, steering 

resolution, attenuation of beam intensity, power consumption, weight/size, and range of 

linear operation. 
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5.  MODEL REFERENCE ADAPTIVE CONTROL   
 

The laser beam steering open-loop system model has been established and 

validated. The adaptive model reference controller is designed and tested. A full 

description of the controller design is provided.   The robustness and efficiency of 

adaptive control is demonstrated. 

 

5.1.  Simulation Analysis Of The Existing System 

 

A simulation model of the entire beam positioning system is implemented in 

VISSIM software, and simulations are performed.  The open-loop simulation diagram is 

shown in Fig. 5.1. 

 
 
 

 

 

 

Figure 5.1. Open loop simulation block diagram 
 

The inputs “Ua” and “Ub” are the desired azimuth “X” and elevation “Y” position 

of the beam, and the outputs  “A_plant” and the “E_plant” are the voltages generated by 

the detector indicating the actual azimuth and elevation displacements. The compound 

block “Plant” contains the simulation model of both Bragg cells and the quadrant detector 

as shown in the Fig. 5.2 below.  The two Bragg cells are placed in the horizontal and 

vertical channels. Their outputs are connected to the quadrant detector model that 

computes the elevation and azimuth position of the beam.  The reference signal is the 

desired beam position on the quadrant.  Using the distance between the Bragg cell and the 

detector, the necessary deflection angle is estimated, and translation from the coordinates 

into acoustic frequency is performed using equations from Chapter 1.  This task is 

performed in the blocks “XtoF” and “YtoF”.  The deflection angles are computed in the 

blocks “Horizontal deflection” and “Vertical deflection”, and the linear displacement of 
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the beam center on the quadrant detector is computed in “Def_X” and “Def_Y”.  The 

Delay block in both channels represents the 8 µsec time interval that is needed for the 

acoustic wave to propagate from the bottom of the cells to the beam.  During this time, no 

sound-light interaction occurs, which explains the use of the pure delay function. After, 

the delay blocks, there are lag filters in both channels.  These lag filters simulate the 

response time of each cell when light-sound interaction occurs. Physically, as explained 

in Chapters 1 and 2, this is the time needed for the sound wave to traverse the beam 

inside the cell. It has been computed and experimentally verified that the response time is 

40 microseconds for the horizontal cell, and 20 microseconds for the vertical cell 

resulting the following transfer functions: 

200000
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100000
100000:

+

+

s
ChannelVertical

s
ChannelHorizontal

 

 

The outputs “X_Dis” and “Y_Dis” are used as inputs to the quadrant detector model.  As 

has been described in Chapter 2 it is obtained by approximating the surface with a 

Radial-Basis-Function neural network with a set of 31 Gaussian functions for each 

channel.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Plant compound block. 
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Using the appropriate time step, operation of the system is simulated.  Coupling 

and non-linearity of the overall system is demonstrated.  Figure 5.3 shows the simulation 

results of the open-loop system as input X is kept constant at 200 microns, while desired 

position Y starts also at 200 microns, but is changed to 550 microns after 500 µsec and 

then decreased to 300 microns after 1500 µsec.  

From Fig. 5.3, one can see that the system exhibits undesirable behavior in the 

azimuth channel when only the elevation channel is excited.  The outputs of both the 

azimuth and elevation channels are not linearly related to the inputs.  Moreover, we can 

observe that when the command input for the elevation channel decreases from 550 to 

300 microns, the output voltage of the corresponding channel of the quadrant detector 

increases. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Open-loop simulation results 
 

This can be explained by coupling and non-linearity of the quadrant detector.   

The mathematical expressions that describe this device are highly nonlinear due to the 

presence of a sum of different Gaussian function with different centers. 
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The system does not exhibit any overshoot being a 2-input-2-output system with 

first order dynamic channels.  The settling time of the overall system is 40 microseconds 

offering a tracking bandwidth of 25KHz.  

The control system to be designed should decouple the plant, linearize it and offer 

a tracking bandwidth of 3KHz.  The design of the model reference controller is 

accomplished using the hyperstability and positivity procedure.  

 

5.2. Design Of The Reference Model Controller 

 

The controller design procedure has to be performed in two stages[1, 2].  First, we 

design a linear model-following (LMF) system using a “best guess” definition of the 

plant.  After this stage the system is augmented with an adaptive model-following (AMF) 

control part. 

 

  A-The LMF design: 

The system “best guess” state variable equations are: 

UbXXX
UaXXX

*200000*200000*50000'
*200000*50000*200000

212

211

+−−=
+−−=′   

or  simply 

UBpXApX ** +=′   

and the output equations are: 
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=

   , 

where 
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First we assume that the desired Acl matrix is given by: 
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where F is a 2x2 matrix of the state variable feedback controller. F has the form: 
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
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
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F  so 




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BpF  and 
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yields: 
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So F is given by  









−−
−−

==
97.025.0
25.097.0

KpF . 

If state variable controller F is used by itself, the system will not meet the desired 

specifications, and will still be coupled due to non-linearity and parameter uncertainties 

of the plant. To obtain a closed loop system as desired, let us assume that the design 

specifications have changed, and let us define the LMF system by finding Km, and Ku. 

 
The desired reference model of the system is given by: 

RBmZAmZ ** +=′ , and ZCmYm *= , 
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R=U the input vector to our system. 

Km and Ku should satisfy: 
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We have: 

AclFBpAp =− *  so, 
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AclAm
Km

Km
KmBm −=
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* . 

Solving for Km yields: 


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Ku is given by BmKuBp =* , so: 
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Solving for Ku gives: 









=

06.00
006.0

Ku  

 

The designed LMF system as defined by the matrices F, Km, and Ku, is valid for 

the “best guess” plant only.  Indeed, if the plant is exactly defined by the “best guess” 

state-space model, then the appropriate control is provided, and the resultant closed loop 

system will exhibit the desired behavior.  However, in our case the best guess plant does 

not describe the exact system as present in the real plant. Using only the LMF design 

without an adaptation mechanism does not satisfy the performance requirements for the 

system as shown in Fig. 5.4.  
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Figure 5.4. Closed-loop simulation results without the adaptation mechanism. 
 

There is a need to come up with an adaptation mechanism that will use the error 

between the plant output and the reference model to adjust the matrices Km, and Ku.  

This is accomplished by upgrading our LMF system to an adaptive model-following 

(AMF) system using the hyperstability and positivity approach. 

 

 B-The AMF system design: 

Following the proper procedure, a successful design includes the definition of 

matrix D, the definition of the intermediate variable V, and the selection of the matrix 
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1-Matrix D definition: 

 Matrix D is defined by solving first for matrix P, such that: 
IKmBmAmPPKmBmAm T −=−+− )*(**)*( ,  

Where 
AclKmBmAm =− * ,  

so P is defined by solving the Lyapunov equation: 
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Solving the Lyapunov equation in MATLAB, yields: 
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2- Vector V Definition 
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  3-Definition of matrix functions ),,(1 τφ tv  and ),,(1 τψ tv . 
 

The adaptation mechanism that provides the controller’s parameters adjustment is 

based on the definition of ),( teKp∆ and ),( teKu∆ .  These two functions are defined as: 
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For computational simplicity purposes, we can assume that: 
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Selecting H=M=I, and selecting G=N=100000*I results in: 
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5.3. Testing Of The Model Reference Controller By Computer Simulations 

The simulation setup of the closed-loop system as implemented in VISSIM for 

testing purposes of the designed adaptive controller is shown in Fig. 5.5. The compound 

block “Characteristics Definition” contains the initialization of all the variables used in 

the system. These include the center frequencies of the Bragg cells, the wavelength of the 

laser, as well as the velocity of the sound propagating inside the Bragg cells.  The 

“References” block contains the input signals identifying positions where the beam is to 

be steered.  The “Reference Model Block” defines desired static and dynamic 

characteristics of the system according to the design specifications.  It includes two linear 

and decoupled channels.  The “Adaptation Mechanism” is the implementation of the 

defined V vector, the ),( teKp∆  and ),( teKu∆  function.  Finally, the “Control effort” 

block implements the control law for both channels defined by: 
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UteKuZKmXteKpUp *),(**),( ++−= ,  
where 
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which implies: 

21 UpUpUp += ,  

where 

UteKuXteKpUp
UKuZKmXKpUp
*),(*),(2

***1
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++−=

 

Up1 is the linear control part, and Up2 the nonlinear control effort. 

 

 

 

 

 

 

 

 

Figure 5.5. Closed-loop adaptive control system simulation setup 
 

After the system is implemented, the model reference controller is first tried with 

the “best guess” definition of the plant. The designed system performed successfully, the 

plant outputs have been decoupled and linearly related to the inputs as specified by the 

reference model. The AMF system design robustness has been tested with the real plant 

model exhibiting high nonlinearity and coupling.  Once again, as can be seen in Fig. 5.5, 

the objective is successfully achieved. The two channels of the plant are decoupled and 

linearized, thus, robustness of the model reference controller is demonstrated.  The 

introduction of the controller allowed the change of our hardware behavior without 

having to redesign the hardware itself.  Indeed, the quadrant detector does not cause any 
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more coupling and does not introduce any nonlinearity in our dynamic channels.  We set 

the azimuth command to 150 microns. For the elevation channel initial desired position is 

set to 200 microns; after 3 msec, the elevation position is changed to 450 microns, and 

then is stepped down to 300 microns after 5 msec, while the azimuth position is kept 

unchanged. More information on the simulation results is presented in Fig. 5.6 – Fig. 5.9. 

Azimuth channel response is presented in Fig. 5.6. One can see how the model-reference 

control system adapts to decrease the discrepancy between the actual and desired 

positions. Initially the system performs poorly, during the second transient it settles back 

to the desired value faster; finally, during the last transient the discrepancy is 

considerably small. This shows how the system “learns” from the tracking error. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Simulation results for the azimuth channel of the AMF control closed-loop 
system 
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Figure 5.7. Tracking error in the azimuth channel 
 

 

Figure. 5.7 presents the difference between the outputs of the reference model and 

the plant. As can be seen from the figure, in steady state the error converges to 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Simulation results for the elevation channel of the AMF control closed-loop 
system 
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Fig. 5.8 illustrates response in the elevation channel. One can see behavior similar 

to that in the azimuth channel: the plant output converges to the reference model signal 

with less error being generated with every successive transient (see Fig. 5.9).  This can be 

explained by the initial condition if the controllers. For this experiment they have been 

set to 0, which is the main cause for large error in the beginning of the first transient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9.Tracking error in the elevation channel 
 
 

Proper selection of initial conditions my help to improve the initial transient. In 

real application the simulation model can be used to adjust parameters of the adaptive 

system off-line, and use those parameters with the hardware.  

It can be seen from the simulation results presented in Fig. 5.6 – Fig. 5.9 that even 

though as time goes on, the magnitude of the error during each transient decreases, the 

error itself never diminishes. We can also observe that after initial adaptation, when the 

next transient occurs, error convergence time is constant and approximately equal to 8 

µsec. This number is related to the propagation delay τ introduced in our model in 

Chapter 1, and experimentally estimated to be 8µsec, as has been shown in Chapter 2. 

This delay is associated with the time necessary for the sound wave to propagate from the 

transducer to the beam; therefore, better alignment can reduce this delay and improve the 
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system performance. Fig. 5.10 – Fig. 5.13 present simulation results for a “good 

alignment” case when the propagation delay τ = 0. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 5.10. Azimuth channel response for τ = 0 
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Figure. 5.11. Azimuth channel tracking error for τ = 0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5.12. Elevation channel response for τ = 0 
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Figure. 5.13. Elevation channel tracking error for τ = 0 
 

5.4.  Jitter Rejection 

 

In order to simulate satellite jitter, different simulation methods can be used [3, 4, 

5].  A noise with frequencies ranging between 1KHz and 3KHz has been considered. In 

order to simulate it, a random gaussian generator has been used and its signal has been 

added to beam displacement, thus modeling platform vibration. A pass-band FIR filter 

with cutoff frequencies of 1000 Hz for the lower limit, and 3000 Hz for the upper limit 

and a Hanning-type window has been is used to select the frequencies of interest. A 

magnitude of 5 micron is chosen to provide a reasonable S/N ratio.  Fig. 5.14 presents a 

sample of injected noise. 
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Figure 5.14 Noise sample after appropriate filtering 
 

A summary of the results obtained by simulation is given. First the noise is 

injected in the azimuth channel.  Fig. 5.15 and 5.16 present the plots of system response 

to noise signal. To obtain these plots, system response to a step input has been obtained. 

Then a similar simulation has been performed with the signal applied to the plant being 

“contaminated” with noise. The selected signal-to-noise ratio (SNR) is 250. The 

difference between two simulation results presents system response to disturbance 

(platform jitter effects).  
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Figure 5.15 Azimuth response to noise signal injected in the horizontal channel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.16. Elevation response to noise signal injected in the horizontal channel 
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Propagation of a disturbance signal through the system results in the output signal 

error. As can be seen from Fig. 5.15, the amplitude of this signal is very small. The 

estimated SNR in the output of the azimuth channel is approximately 14000; therefore, 

disturbance rejection for this channel is 

dB35
250

14000log20 =





  

For the elevation channel (see Fig. 5.16) SNR = 160000, and disturbance rejection is 

dB56
250

160000log20 =





  

Similar simulations have been performed for the case when the noise is injected in 

the elevation channel. The results are presented in Fig. 5.17 and 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Azimuth response to noise signal injected in the vertical channel 
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Figure 5.18 Elevation response to noise signal injected in the vertical channel 
 

 

5.5.  Acoustic Power Control: Diffraction Efficiencies 

 

The overall diffraction efficiency is evaluated by multiplying the diffraction 

efficiencies of the two cells.  Diffraction efficiency of each cell depends, in particular, on 

acoustic power and is computed using the formulas given in Chapters 1 and 3 as follows 
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


Θ
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di
a P

H
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LM
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sin 2222

λ
π

λ
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This parameter is sensitive to the transducer length and height as well as acoustic 

power.  It is also dependent on the incident and diffracted angle in the case of the 

birefringent cells.  However, due to the fact that these angles are generally small (in the 

order of microradians), their cosine is very close to 1 and can often be disregarded.  
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As an example let us consider a Bragg cell with the following parameters: 

acoustic bandwidth ∆f = 12 MHz (from 18MHz to 30 MHz);  deflection figure of merit 

M2 = 1200*10-15 

transducer length L = 16 mm 

transducer height H = 25 mm 

 

The wavelength of the laser beam is 670 nm. First approach to power 

management mentioned in Chapter 1 is the use of constant acoustic power. The setup in 

our laboratory provides 400 mW to each Bragg cell. As a simulation experiment, 

frequency of the RF signal applied to the transducer has been varied between 18 and 30 

MHz in a sinusoidal manner as shown in Fig. 5.19. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure. 5.19. Acoustic frequency applied to the Bragg cell 
 

According to the equations of physics presented in Chapter 3 for a birefringent 

cell, the deflection angle changes as shown in Fig. 5.20. Note that the deflection angle is 

obtained with respect to the direction of the first diffracted order corresponding to the 

center frequency. Fig. 5.21 presents diffraction efficiency dynamics as steering from the 

minimum to the maximum deflection angle is performed. 
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Figure 5.20. Deflection angle change 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Diffraction efficiency for Pa = 400 mW 
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As can be seen from Fig. 5.21, the change in diffraction efficiency is negligible 

due to the fact that steering range is small. Acoustic power can be adjusted to maximize η 

as follows. Assuming that cos(ΘI) = cos(Θd) = 1, we have 

 

W
LM

HPa 2923.0
016.0*10*1200*2
)10*670(*025.0

2 15

29

2

===
−

−λ  

 

Figure 5.22 presents simulation results for the acoustic power computed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. Diffraction efficiency for Pa = 292.3 mW 
 

The following conclusion can be made. For small steering range constant acoustic 

power can be used for the Bragg cell to ensure high diffraction efficiency. Modulation 

described by (1.28) is necessary only when cos(Θd) significantly deviates from 1. As can 

be seen from the results presented in Fig. 5.21 and 5.22, high diffraction efficiency can be 

achieved for a relatively large acoustic power range. A plot of diffraction efficiency as a 

function of acoustic power is presented in Fig. 5.23. 
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Figure 5.23. Diffraction efficiency as a function of acoustic power 
 

The only concern about acoustic power is that in the case when it is not selected 

appropriately, and the sound wave attenuates as it traverses the laser beam, diffraction 

efficiency changes in the direction of acoustic wave propagation and may become too 

small at some point. As a result, we can observe the effect discussed in Chapter 2, when 

distortion of the deflected beam profile occurs, and the overall efficiency of the device 

decreases. Therefore, it is recommended to perform optimal design of the Bragg cell 

using several constraints and criteria. Attenuation will pose a requirement on the 

minimum acoustic power. The equation of diffraction efficiency should also be used as 

one of the constraints to ensure that this parameter does not decrease below the required 

value. Depending on other design specifications and system characteristics that need to 

be minimized or maximized, a procedure, such as genetic algorithm optimization 

discussed in Chapter 3 may be successfully utilized.  
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5.6. Conclusion 

 

In this part of the project simulation analysis of the Bragg cell-based steering 

system has been performed. It has been demonstrated that uncompensated system 

exhibits nonlinear behavior and has coupling between its dynamic channels.  

 
The model reference control approach has been applied and an Adaptive Model 

Following control system based on hyperstability and positivity principle has been 

designed. It has been proved by simulations that the controllers decouple and linearize the 

plant. It has also been demonstrated that this system offers at least 35 dB noise rejection. 

 
A diffraction efficiency model has been implemented in simulation software. It 

has been demonstrated that for many practical tasks acoustic power modulation is not 

necessary. It has also been demonstrated that acceptable diffraction efficiency can be 

obtained over a range of values for Pa. The issue of proper selection of acoustic power in 

terms of acoustic attenuation has also been addressed. The results obtained by 

simulations and analysis point in the direction of implementing optimization procedures 

for selecting parameters of the Bragg cell and other system components. 
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